

UNIVERSITAS NEGERI YOGYAKARTA

FACULTY OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS EDUCATION Jalan Colombo Nomor 1 Yogyakarta 55281 Telepon: (0274) 565411 Pesawat 217, (0274) 565411 (TU); Fax. (0274) 548203 Laman: fmipa.uny.ac.id, E-mail: humas_fmipa@uny.ac.id

Bachelor of Education in Mathematics

MODULE HANDBOOK

Numerical Methods						
Undergraduate						
MAT6332						
-						
-						
6 th						
Sahid, M.Sc						
Sahid, M.Sc.; Fitriana Yuli S., M.Si.; Nikenasih B, M.Sc.						
Bahasa Indonesia						
Compulsory course						
150 minutes lectures and 180 minutes structured activities pe						
week.						
150 minutes lectures, 180 minutes structured activities, and						
180 minutes self study per week for 16 weeks.						
3						
Algorithms and Programming (MAT 6310)						
After taking this course the students have ability to:						
CO1. Explain the meaning of numerical methods and the						
importance of numerical methods in solving						
mathematical problems						
CO2. Explain the concept of errors and concepts related to						
errors in numerical computing, both theoretically and						
practically						

	CO3. Use special math software (Euler Maths Toolbox,						
	Octave, SCILAB, or MATLAB, etc.) to implement						
	algorithms in numerical methods						
	CO4. Using a numerical method that is suitable for						
	determining the completion of a system of linear						
	equations (SPL)						
	CO5. Using a numerical method that is suitable for						
	calculating the approximation solution of a nonlinear						
	equation						
	CO6. Using a numerical method that is suitable for						
	calculating the approximation value of a function						
	(interpolation)						
	CO7. Using a numerical method that is suitable for						
	calculating the approximation solution of derivative						
	CO8. Using numerical methods that are suitable for						
	calculating the aproximation solution of integral						
	CO9. Using the numerical method that is suitable for						
	calculating the approximation solution to ordinary						
	differential equations (initial value problem)						
	The course discusses about errors in numerical						
	approximation, numerical system solving of linear equations,						
	numerically almost non-linear root equations, numerical						
	interpolation, degradation and integration, and numerical						
	solving of ordinary differential equations (initial value						
Content:	problems). Some numerical methods for solving mathematical						
	problems are introduced in this course. There is a practical						
	activity using a computer program (Euler Maths Toolbox,						
	Octave, SCILAB, or MATLAB, etc.) to implement algorithms						
	and solve numerically related mathematical problems.						
	Attitude assessment is carried out at each meeting by						
Study/examachievements:	observation and / or self-assessment techniques using the						
	assumption that basically every student has a good attitude						
	The student is given a value of very good or not good attitudeif						

	they	, sho	ow it sig	nificantlycompared	d to other stu	udents in	
	general. The result of attitude assessment is not a component						
	of the final grades, but as one of therequirements to pass the						
	course. Students will pass from this course if at least have a						
	good attitude. The final mark will be weight as follow:						
		No	СО	Assessment Object	Assessment Technique	Weight	
		1	CO 1- CO 9	a. Individual assignment	Written test	15%	
				b. Group assignment		15%	
				c. Quiz		10%	
				d. Mid Exam		30%	
				e. Final Exam	Total	30% 100%	
					Total	10070	
Forms of media:	Board, LCD Projector, Laptop/Computer						
	1. Pengantar Komputasi Numerik dengan MATLAB (2005)						
	oleh Sahid (Penerbit Andi Yogyakarta).						
	2. Handout Metode Numerik (Sahid, 2008-2009, FMIPA						
	UNY).						
	3. Applied Numerical Methods with Matlab for Engineers and						
Literature:	Scientists, third edition (2012) oleh Steve Chapra. (The						
	McGraw-Hill Companies, Inc.).						
	4. Numerical Analysis, 9 th edition (2011), oleh Richard L.						
	Burden & amp; J. Douglas Faires. (Brooks/Cole, Cengage						
			•			Congage	
Learning.)							

PLO and CO mapping

	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	PLO7	PLO8	PLO9	PLO10	PLO11	PLO12
CO1		✓										
CO2						✓						
CO3				✓								
CO4						✓						
CO5						✓						
CO6						✓						
C07							✓					
CO8							✓					
CO9							\checkmark					